
Why Pay High
Prices for Defect
Management?

24 • Software Test & Performance MONTH 2005

Quality Costs
Money, But
A Lack Of
Quality Costs
More. Defect
Management
Is the Key To
Any Project’s
‘Mileage.’



Testing is much more than just finding
bugs to squash.  It’s not an event, but a
set of diverse activities playing a criti-
cal role in identifying problems of var-
ied types throughout the project life
cycle, far in advance of public access to
the software.  

Tracking the real costs of software
failure, such as patches, support and
rework, can be difficult, but it’s clear

that effective testing can help optimize
the cost of quality. Within the activities
of testing, defect management needs
thoughtful consideration to ensure
that communication is as efficient and
collaborative as possible and turn-
around is prompt.

In his article “Quality Cost Analysis:
Benefits and Risks,” Cem Kaner defines
quality costs as those costs associated
with preventing, finding and correcting
defective work. He notes that these costs
can be on the order of 20 to 40 percent
of sales.  

Kaner outlines four types of costs that
when added together make up the over-
all cost of the current quality of the appli-
cation. The “total cost of quality” is the
sum of prevention, plus appraisal, plus
internal failure, plus external failure.  

Appraisal costs are associated with
activities designed to find quality prob-
lems, such as code inspections and any
type of testing. Subsequent to detecting
a quality problem are the costs associat-
ed with what happens next—for exam-
ple, how that quality report is handled,
how it’s investigated and how it’s deter-
mined to be resolved.

The Defect Life Cycle
The defect life cycle describes how a
quality report or defect is handled,
investigated and resolved. The defect
life cycle is one of the foundation
processes in any company that produces
software. It’s primarily this process that
describes how testing and development
departments interact around issue or
defect reports. However, in some cases,
the entire project team will become
involved.

The defect life cycle typically focuses
on how the setting and tracking of the
severity and/or priority of a defect is
done. The severity rating is related to the
likelihood that the defect will be encoun-
tered in the field and to the impact or
cost of that encounter. Severity empha-
sizes the effort to reduce external fail-
ures as they relate to the total cost of
quality within the organization.  

Test managers must seek out poten-
tial improvements in all areas included

in the formula for the total cost of qual-
ity. They must define efficient methods
of communication between different
organizational groups on the project
team, and they must define the support-
ing processes.  

As this illustration demonstrates,
when decisions about product behavior
and functionality arise, the test group
interfaces with all members of the proj-
ect team: development, project manage-
ment, business analysts and product
management.

The defect life cycle can be a very
effective tool for managing the complex
communication that occurs as a software
system enters the testing cycle. If planned
carefully, the defect life cycle can keep
testing cycles running efficiently.

What Is a Defect?
In defining the defect life cycle, it’s
important to understand what a quality
report, or defect, is. Our team uses tra-
ditional definitions of a defect, beyond
simply evaluating conformation to the
requirements:

• “A software error is present when 
the program does not do what its 
end user reasonably expects it to 
do.”—G.J. Myers, “Software Relia- 
bility: Principles & Practices”  

• “The extent to which a program 
has bugs is measured by the extent 
to which it fails to be useful. This 
is a fundamentally human 
measure.”—B. Beizer, “Software 
System Testing and Quality 
Assurance”

Incorporating these definitions into
testing allows the project team to use
the requirements as the product
roadmap and, at the same time, take
notice of broader quality issues along
the way.

Attributes of a Defect Report
Many attributes can be ascribed to a de-
fect in order to classify, organize and
analyze associated issues. Aside from
having a unique Identifier (DefectID), a
Description of the issue with Reproduction
Steps, and Expected and Actual Results, a
defect report might include some of the

Trevor Atkins is co-founder and vice presi-
dent, operations, of QA Labs. Formerly a
quality systems strategist at Paradigm
Development Corp., he holds a degree in
applied science in electrical engineering from
the University of British Columbia.

MONTH 2005 www.stpmag.com • 25

I f you want quality costs to stop guzzling money, the

most effective thing you can do is optimize your 

project’s defect life cycle. Here’s how.          By Trevor Atkins

P
ho

to
gr

ap
h

by
Jo

se
G

il



26 • Software Test & Performance MONTH 2005

following descriptions:

Status
Assigned To
Priority
Severity
Functional Area
Feature
How Found
Type of Environment
Resolution
Opened Version
Opened By
Opened Date
Related Test Cases/Requirements
History or Audit Trail

By including these attributes in the
recording of defects, and as part of the
defect life cycle, the information can be
used to make observations and draw con-
clusions, typically using metrics [IEEE
Standard for a Software Quality Metrics
Methodology, IEEE Std 1061-1998
(Revision of IEEE Std 1061-1992)].  

Using Defect Resolution
In the defect life cycle, all defects must
be resolved at one time or another, or by
definition they have not been addressed.
Figure 1 highlights the Resolved state in
a simplistic defect life cycle.

Three facets of the defect life cycle
that are not clear from this simplistic dia-
gram are when it is resolved; when it is
determined that it is not fixed; and when
it can be closed. The Resolution attrib-
ute can be used to address this issue.

Not all defects are fixed by develop-

ment. For example, developers may
resolve a defect as Not a Bug; By Design;
Not Reproducible; Duplicate Bug, etc.,
as the reason for moving the defect out
of their queues.

In his paper “How To Win Friends,
Influence Programmers, and Stomp
Bugs,” Kaner suggests the following list
of options for the resolution of a defect
in your defect database:

Fixed: The programmer says it’s
fixed. Check it.  

Cannot Reproduce: The programmer
can’t make the failure happen. Add
details, and notify the programmer.
Also known as “Not Repro.”

Deferred: It’s a bug, but it will be
fixed later.  

As Designed: The program works as
it’s supposed to. Also known as “By
Design.”

Need Info: The programmer needs
more info about the bug.  

Duplicate: This is a repeat of another

bug report (cross-reference it on this
report.) 

Withdrawn: The person who report-
ed this bug is withdrawing the report.

The resolution type can contain
other options in addition to the above,
such as Enhancement, Spec Issue, Not
Implemented, Feature Request and
Third Party.  

Resolution Philosophy
In the Resolution attribute we can cap-
ture much of the philosophy, or under-
lying ideology, of the defect resolution
process. The core of this philosophy is
to obtain a more detailed picture of the
defect counts, allowing an improved
analysis of that data for more accurate
and useful metrics. Using the resolution
type options provided above, we can
investigate some straightforward inter-
pretations of their use: 

Fixed implies that there really was a
problem in the code and it has been
addressed. 

By Design implies that the tester may
not have the latest information about the
functionality—or may not have the nec-
essary understanding of the product.

Enhancement implies that the tester
has not found a defect per se, but that
the issue is a new feature or feature
modification request. In other words,
this is not a defect, but it has been
implemented in the current release (as
opposed to those that have been
deferred). This information is valuable
for the future, as these records can then
be distinguished from the others for
easy collection and inclusion in the
requirements document and Help files.  

Not Repro implies that there is not
enough information in the report for
the developer to be able to reproduce
the defect, and that the tester needs to
clarify or add information or withdraw
the defect. There may be preconditions
or hardware setup required for observ-

DEFECT LIFE CYCLE

1: PROJECT TEAM INTERFACES

Product 
management

Product 
management

Test

Business/
requirements

analysts
Development

2: SIMPLIFIED DEFECT LIFE CYCLE

OpenStart

Deferred

Resolved

Defect is not fixed

Defect to be addressed later

Defect fixedDefect reported Defect confirmed fixed

Closed End



MONTH 2005 www.stpmag.com • 27

ing this defect that need to be added to
the report, or pointed out to the devel-
oper if already in the report (such as
the build number or environment
information). This resolution should
appear only as a transitory value before
the true resolution is set.

You could create similar definitions
to the basic examples noted above if you
were looking at just the surface of the
defects. However, no doubt you’ve expe-
rienced instances (such as deadline pres-
sure) where limited or poorly defined
resolutions have resulted in some of
those available resolutions being used
inappropriately, particularly as develop-
ers try to clear out their queues. In these
cases, it often becomes the job of the
tester, through the mechanism of the
defect life cycle, to make sure the
defects get to the right audience and
aren’t simply let go.  

“Need More Info” and “Cannot
Reproduce” are examples of resolutions
that can create excessive dialogue or
“churn” between developers and
testers. The examination of how many
defects get these kinds of resolutions, as
well as the reasons why, can provide
good insight into training opportunities
within the project team, which can help
to reduce this kind of rework. These
investigations can also result in
improvements to the application or the
introduction of new tools that can help
with future problem diagnoses.

“By Design” may be a defect that
should not have been logged, as
implied above. But what if the design is
flawed? Referring back to the defini-
tion of a defect can be helpful in decid-
ing the next step. Having the necessary
decision gate for this resolution in the
defect life cycle will allow that step to
occur.

A defined and visible defect life cycle
process that incorporates support for
defect resolution will drive efficient
communication while simultaneously
enabling more accurate interpretations
from collected data. For example, if a
defect is resolved “As Designed” or
“Deferred,” perhaps that defect is then
assigned to the business analyst respon-
sible for that functional area. That per-
son can then confirm the issue before it
goes back to the tester for review.
Alternatively, it might even be escalated
to the product manager for review.

“Duplicate” defects can indicate a
number of scenarios: a higher likelihood
that the defect will be encountered; poor

organization in terms of resource effort
overlap; poor processes for making sure
the majority of duplicates are caught
before going to development; or even
poor training. Given the number of pos-
sible implications, review of the defects
with this resolution may need to be
incorporated into “bug triage,” to help
set the appropriate priority and the
project milestone reviews, and “post
mortem,” to determine process and
training improvement requirements.

Process Implications
An effective defect life cycle ensures
that defects won’t be investigated for
the wrong reasons and that the correct
defects will be logged. Referring to the
last example above, it’s important to log
as few duplicate defects as possible to
minimize valuable development time
spent investigating the issues. 

Before reporting and assigning a sus-
pected defect to a developer, the tester
should review all currently open defects
(or search for similar defects via key-
words). If it is determined that the
defect is a duplicate, the tester can then
add any additional information to the
existing defect, note whether the differ-
ences are of a greater degree, log a new
defect record and associate the two. 

This process will ensure that even if
duplicate defects get logged, there is a
valid process in place that not only illus-
trates that the testers are taking proper
care in their defect logging but also min-
imizes the amount of time spent by the
developers on investigating quality issues. 

Figure 3 shows—for just a few resolu-

tions choices—how the defect life cycle
workflow can be influenced by appropri-
ate use of the Resolution attribute to
make sure the right questions are asked
by the right people. Ultimately, this strat-
egy ensures that the product will be of a
higher quality and that cost savings will
be realized as a result of more efficient
communication and decision-making.

Just as defect reports provide valuable
insight into the commonly occurring
types or classes of defects, analysis of

other attributes can provide useful infor-
mation for driving improvements.  With-
out specific tracking of defect resolu-
tions, the true defect find rate and defect
clustering in the code will be obscured
by Duplicates, Not Repros, By Designs,
Enhancements and Feature Requests.  

Recording and analyzing this infor-
mation will help ensure that you will be
able to investigate and address the root
causes of these quality costs. An adaptive
approach to testing processes, communi-
cation and training can show that you
have a strong and capable test team.
Including a Resolution attribute with
well-thought-out choices as part of your
defect database, and more specifically
within the workflows of your defect life
cycle, will help you achieve this.ý

DEFECT LIFE CYCLE

3: HOW RESOLUTIONS INFLUENCE THE DEFECT LIFE CYCLE

Product management
business analysts

Fixed

Third Party
For Re-testingResolved

Spec issue
By Design

Deferred

Not Repro

Withdrawn
Need Info

Testers

REFERENCES
1. Beizer, B., “Software System Testing and Quality 

Assurance,” Van Nostrand Reinhold, 1984
2. Kaner, Cem, “How To Win Friends, Influence 

Programmers, and Stomp Bugs, ”
www.kaner.com/pdfs/BugAdvocacy.pdf

2. Kaner, Cem, “Quality Cost Analysis: Benefits and 
Risks,” in Software QA, Vol. 3, No. 1, 1996, p. 23

3. Myers, G.J., “Software Reliability: Principles & 
Practices,” John Wiley & Sons, 1976


