Hverpath”

Technologies

Communicating Requirements To Testing
You're Going To Be In Pictures!

By Trevor Atkins October 29, 2008

Communication is the process of attempting to cgriméormation from a
sender to a receiver with the use of a medium.ediffe communication
requires that all parties have a basis of commgnali which a shared
understanding on a particular subject can be aetiiev

Human communication was revolutionized long agchvépeech, which
greatly facilitated the communication of informaticand knowledge.
Information communicated via spoken language becaereasingly rich,
and allowed humans to work and advance togethehmare quickly than
was previously possible. Speech meant easier ic@dioh, cooperation,
technological progress, and development of compalbgiract concepts.

However, speech depends on the imperfect tool ofamumemory, through
which information can become corrupted with eacleliéng or even lost
entirely to the passage of time, and there is @ tomhow much information
can be remembered by the receiver in a single ‘aomuation’. Finally, the
information is stored in the fragile form of therhan body — with the
sudden death of a 'wise man' or elder, a tribalgroould abruptly lose
generations of accumulated knowledge.

The imperfection of speech eventually resultechim development of new
forms of communication, improving the range at whigeople could
communicate as well as increasing the volume amdjelaty of the
information involved. These advancements weredasehe development
of writing in which the representation of concefiteough pictographs and
symbols was the key early driver.

WHITEPAPER

COPYRIGHT 2008 SILVERPATH TECHNOLOGIES INC.



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

How do you know what a system is supposed to dondrad it is not supposed
to do? Formal requirements are intended to createeasily validated,
maintainable and comprehensive set of documentsncmicating the system's
planned functional scope in terms of tasks and\iebes.

It is well understood that a higher quality proddeimands a higher upfront
investment. However, compromises regarding quaMssus cost are made
every day and tight project budgets and short timesloften greatly reduce the
interest in formalized documentation, requirementstherwise.

"The communication of functional requirements and
specifications is the most difficult, critical, apdror-
prone task in IT projects. Research has shown that
projects that proceed to the construction and cgdin
phase with missing or wrong functional requiremeantd
specifications are almost certain to fail."BHl Walton,
"A Systematic Approach for More Effective
Communication of Functional Requirements and
Specifications”

A balanced approach that maximizes the contributibrihe organization's
available resources within the project constraisteequired. The following
proven light-weight solution tailored to your timafnes and resource realities
can allow testing to, in the absence of completen& requirements, capture
critical information about the system without slogi development. The
resulting artifacts can also serve as a direct tiripto testing activities —
avoiding significant duplication of effort and pise confusions.

Who Needs Requirements?

In the fast-paced changing world of software dgwelent there is a continuot "Industry datasuggests the
challenge to communicate the expectations for yaem and its internally an  approximately 50 percent of
externally facing behaviours. Formal, documenteguirements often suffe Product defects originate in the
because of the challenges in keeping up with stevetive project life-cycles eguirements. Perhaps 80 percent
continually evolving product scope and customer ales, and uncertain ¢ 90 L0 [EL07S B 611 2

h . d interf development project can be traced
changing screens and Iinterifaces. to requirements defects. Anything

. . L ) . L you can do to prevent requirements
And yet, requirements information is a primary ihpo the majority of the errors from propagating

stakeholders' project activities. Consider théoWing example stakeholde downstream will save you time and
groups: money."- Karl Wiegers,
+ Marketing: Promotion of system capabilities, competitive "Inspecting Requirements”
comparisons
* Customer: Scope definition, description of business needbsumers /
roles, definition of acceptance criteria
» Business Analysis: Elicitation and capture of business logic and $ask
from the customer and other stakeholders
* Project Management: Scope management, risk planning, effort
estimation, project goal setting, project and reseyplanning
» Development: Design and implementation
» Tegting: Verification and validation
* Technical Writing: Creation of user manuals and tutorials

It is evident that all stakeholders have a vestéelést to collectively optimize
agreement, while simultaneously minimizing risk aadork costs on a given
project. But, without clearly stated requirementssting, specifically, is
unable to contribute effectively to these goalstmmperform its job of both

o

Iver ath 2 of 11
Technologles



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

verifying that the system was implemented correeatiyl validating that the
correct system was implemented.

This impairment also extends to responding to #edrto accurately measure
and report the test coverage of the system. WitHocumented requirements

and the associated dependent artifacts, it isalistumpossible to properly
answer questions such as the following:

» Have all the requirements been implemented?

» Have tests been created to verify each of the reaquents?

* Have all the requirements been tested for thislduitlease?

*  Which areas of the system are stable and whichatfe

Unless requirements can be traced accurately thrdbg related projec
artifacts, such as business requirements, use,casegional requirements
design specifications, code, test results, andctgfé is impossible to ensur
that the system is being built for the intendedppees and tested adequatel
keeping the project on track and avoiding expenswork later.

Working With The Existing Requirements

Most projects will have requirements information Some form or anothe
whether it is formal specifications, wireframes, akiwps, prototypes, dialo
maps, content sheets, previous system releasesnaseals, or even stored
the minds of subject matter experts (SME's). Ant ivery likely that the
customer has contributed to the requirements bygribéisg what they want
from the system in terms of their business needs.

In general, many of these requirements sourcebdmdelves will not provide
enough detail for developers to code or for testmgest without making
interpretations, assumptions, or guesses. Usescasel functional
requirements are needed to provide the data flawildeand the functional
capabilities of each component. And, as the ptdjfscycle progress, more

! Requirements traceability is also
beneficial for risk analysis when a
requirement needs to be changed.

"Sometimes developers or project
managers agree to make suggested
changes without carefully thinking
through the implications. The
change might turn out to be more
complex than anticipated, take
longer than promised, be
technically or economically
infeasible, or conflict with other
requirements.* Karl Wiegers,
"Karl Wiegers Describes Ten
Requirements Traps to Avoid"

artifacts will be included — the design specifioati the code, and the tests

which will link to the use cases and the functioreduirements, and through

them, to the customer's business requirements.

Writing Quality Requirements

It is common to have some portion of the requirasmeimformation
documented in a formal manner for consumption bgtakeholders including
testing.

Formally written requirements are typically desedhin natural language suc
that both the customer and vendor or project team wnderstand then
However, many words and phrases have meaningscémtbe interprete(
based on the context in which they are used. Rements described in thi
form can have several severe problems includingiguity, inaccuracy anc
inconsistency.

Frequently, the impact of these problems surfate ila the project at the
acceptance phase as discrepancies are realizegdpetwhat was built and

what the customer thought was being built — a ateae of the lack of quality

requirements directly causing customer dissatisfact

"The ultimate symptom of vague requirements is that
developers have to ask the author, analyst or coste many
guestions, or they have to guess about what i$yredended.

"The criticality of correct
complete, testable requirements is
a fundamental tenet of software
engineering. The success of a
project, both functionally and
financially, is directly affected by
the quality of the requirements."
— Theodore F. Hammer, Linda H.
Rosenberg, et al., "Doing
Requirements Right the First
Time!"

o

Iver ath
Technologles

3o0f11



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

The extent of this guessing game might not be rézed until
the project is far along and implementation hasdjed from
what is really required. At this point, expensiga/ork may
be needed to bring things back into alignmentKarl
Wiegers, "Karl Wiegers Describes Ten Requiremenapd to
Avoid"

Involving testing early in the project lifecycle ares the chance to review

requirements for important quality attributes, agkestions, and get issues

resolved before they become much more expensiv@gms in the code.

Using a style guide when both writing and reviewneguirements can hel
alleviate the problems in this area. With a welfided style guide tha
addresses the quality attributes, such as thosdified by the NASA Goddarc
Space Flight Center's (GSFC) Software Assurancehniagtogy Center
(SATC), metrics can be easily employed to revead #trengths anc
weaknesses of the formal requirements documentatiole there is still time
to fix any issues.

Similar to a development coding standard, a requérds style guide outline
when and where terms and structures must and mniaesnalely be used
thereby helping maintain control over ambiguitynsistency, correctness, ar
completeness.

What Requirements Are Missing?

The upfront time that it takes to document formeduirements properly anu
completely is often perceived as a barrier to awidn though it is easy to
recognize that the proven savings downstream nharrereturn the investment.

For example, if are you shipping software applarati under significant time-

I The SATC developed the
Automated Requirements
Measurement (ARM) tool which
can be used to assess the quality of
a project's requirements documents
easily and on an on-going basis
during the life of the documents.
The ARM tool searches the
requirements document for terms
the SATC has identified as quality
indicators.

For more information on the NASA
SATC quality attributes and the
ARM tool, visit:
http://satc.gsfc.nasa.gov/tools/arm/

to-market pressures, you likely lack many formajuieements because of the

huge pressures to show tangible progress fromrnldeusers’ points of view.
You don't want to slow down development or testlmghaving to create
detailed documentation. At the same time, the ¢féfstt needs to be useful

and measurable or the customer will be the onertiegall the issues whether

they are code or specification related. How, Miitited formal requirements,
can this system be tested to achieve adequatdieffeoverage and overall
stability of its functionality?

Testing can greatly benefit from engaging in upHrimformation gathering to
increase understanding of how the software is dedrto work and in which
situations, especially when formal requirements tajew to none.

In the rushed atmosphere of 'we need to start gaaliid we need to start now
it is hard to convince anyone to take the time edfiggm ‘understood’ forma
documentation activities, let alone develop andlyappnew documentatior
technique.

However, the following will outline a solution amarch to capture the ver
necessary requirements information in a rapid bphisticated manner the
will feed directly into the needs of testing busalpotentially facilitate the
needs of the other stakeholders. And this apprasitthleverage the test
resources of your project team while they awaitlenpgented functionality to
be delivered for testing.

! A Standish Group CHAOS study
of over 8,300 IT projects found that
more than 50% were "challenged"”
with reduced functionality being
delivered over-budget and beyond
the estimated schedule. The main
reasons were a lack of user input
and incomplete and changing
requirements.

o

Iver ath
Technologles

40f11



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

Picturesfor Testing

When you have minimal or out-of-date requiremeatf;st step in capturing a
useful understanding of the system to be testediling in the gaps regarding
its purpose and functions, is to think in pictures.

Every picture helps tell a story and stories ornac®s form a basis for
analysis and testing.

"Imagery is the most fundamental language we have.
Everything you do, the mind processes through image
— Dennis Gersten, M.D. published in Atlantis, artonthly
imagery newsletter

The Unified Modeling Language (UML), which is arstiard for specifying,
visualizing, and documenting the artifacts of seftev systems, can be
employed to help provide these pictures. Howethare are less formal types
of notations you can use to put together straigivdiod diagrams, such as
activity flowcharts, data flow diagrams, state degs, and sequence
diagrams, that can be more useful for meeting pooject's testing needs.

"Pictures can pack a great deal of information iatsmall
space. They help us to see connections that nogsw
cannot."— Elizabeth Hendrickson, "A Picture's Worth a
Thousand Words"

Using diagrams can be very effective to visualim goftware, not only for the

tester but for the whole project team and as loagy@ can capture the

information you need to generate comprehensiveg#iale test ideas, it doesn't
matter what notation you use.

The First Sketch

What do you know about the system to be tested?it & client-server
application? What are the major subsystems? igeli-based? Is there a
database? Are there external files being accessedritten? Are there
clusters? What are the major tasks the systempjzosed to perform?

Start by asking end users, project managers, dexMepand other stakeholders
these basic 'W5H' questions to assist in clarifyiregsystem's scope:

* Why s the system being built?

* Who are the end users of the system?

* What are the tasks to be performed?

* When are there interactions between modules? tfigr systems?

*  Where will the system be deployed?

* How is the system being built? (architecture)

Capture this information in an annotated diagraniefoverall system.

o

Iver ath 50f11
Technologles



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

The following is an example illustration of whatrpaf this initial picture
could look like for a corporate telephone system:

O

Outside
Caller

External Switch
Network

Subsystems

- Multiple
Voice lines to

/ System Mail

Mgmt

Mgmt

Caller
Administrator Reception

(remote or local) (‘ext-0)

Figure 1: First depiction of a corporate telephosyestem

Adding the Details

Next, drill-down on the depiction of the main moeiland the list of tasks to
address when, why, and how they interact. Fromphint, you can proceed to
create more detailed diagrams for the functionalitg the workflows within
each module and those that span multiple modules.

When capturing these more detailed views of theesys also capture the
following information for each module, workflow, dthe system overall:
»  State which are the primary tasks of the system
» Describe sequences in which tasks are normallyppedd
» Describe the user roles / responsibilities and vidln@bmmon system
usage for each on a periodic basis, eg: daily, hipnor yearly
* Point out system limitations, eg: things that tlystam cannot or is
not supposed to do
* Summarize the system's environment, eg: targeloptas and other
systems with which it must interface or co-exist
* Outline or list functionality that is not includeds part of the
workflows — use checklists

Once you have outlined a rough view of how theesysis supposed to behave,
work with end users and applicable stakeholdergvy@w your diagrams and
short descriptions to help in defining the asseciatcenarios in more detail.
This simple collaboration will not only help you daerstand what the customer
is expecting but will also allow you to rapidly sisninate and validate the
information you have captured so far with the prbjeam.

At the same time, describing the tasks and subtasttstail will lead directly
test scenarios and analyzing the relationships gntee modules will help
determine the important inputs for the overallitesstrategy.

Toolsto Develop Your Pictures

Flowcharts and state diagrams are powerful visa@din tools for capturing
the behaviours and functionality of a system, disiailbg path coverage and
generating ideas for error path or negative testiNgrrative user scenarios can
be used to complement and expand upon what isq@dvn the diagrammatic
representation. Adding checklists and matricesfuither enable testing to be

o

Iver ath 6 of 11
Technologles



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

able to rapidly document the functionality to bstéel and to be able to
measure or assess the progress of that testirlg easi

Flowcharts

A flowchart is a common pictorial representation afprocess or task,
describing the logical flow of decision points aackivities. Flowcharts are
useful for defining the paths you want to verify tor force from an error
condition.

The following is an example illustration of whateoannotated scenario for a
corporate telephone system could look like as\achart:

Scenario
initiated
Question: can go to
speakerphone and Pick up
back at any point? handset
receiver
. Question: when
Dial No  canthis happen?
tone o
?
Yes
Alternate flows to
incorporate:
1) internal extension Dial number

2) outside local
3) outside long
distance

4) 911 call

Question: can go to
mute and back at any
point?

answered
?

Alternate flows to
incorporate:

1) hold

2) transfer

3) conference

A
Hang up

handset
receiver

Scenario
terminates

Figure 2: First depiction of the 'Making a Call —i@inator Is Inside Caller' scenario

A

Flowcharts provide an excellent form of rapid, &ygvisual, documentation
that makes it easy to examine how various stefs fanocess or task should
connect together.

! The flowchart, state diagram and
user scenario examples given
below are presented as ‘first
depictions’. As such they are not
necessarily complete or even
correct.

The examples illustrate that the
rapid collection of information can
be made through a combination of
pictorial and narrative approaches
that facilitate easy review and
discussion leading quickly to
traceable test ideas.

*
Iver ath

Technolog|es

7 of 11



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

State Diagrams

Another option to capture system behaviour is thhodhe use of state
diagrams. State diagrams describe all of the plessitates of an object as
events occur and the conditions for transitionsveen those states.

The following is an example illustration of whatatgs the handset of a
corporate telephone system could have:

Note: Can go to On Hook Initial, idle and
from any state final state
Off Hook On Hook Ringing

Hangs-up

Incoming call

Picks up
receiver

Answers
call

Hangs-up

Off Hook
Warning

Dial-Tone Dialing Connecting Connected

No activity for Begins dialing Completes Answers
too long number dialing number call

Figure 3: First depiction of the states of the sypsthandset

All state diagrams begin with an initial state dfetobject. Transition
conditions based on activities determine the néatiesof the object. State
diagrams can help reveal states in the systematfganot obvious to or are
hidden from the actual users.

User Scenarios

User scenarios define a sequence of actions comaplgt a system or user that
provides a recognizable result to the user. Lingl requirements, a user
scenario is written in natural language that dréwm a common glossary.

The user scenario will have the basic or typicalfbf events (the 'must have'
functionality) and the alternate flows.

Example user scenario: The following provides an example outline|of
a user scenario:

Name: Making a Call — Originator Is Inside Caller
Actor (9): Inside Caller, (Outside Caller, Receptionist)
Basic Flow:
1.0 Inside Caller picks up receiver of handset
2.0 Inside Caller waits for dial-tone
3.0 Inside Caller dials a phone number on handset keyjrathe
case of an outside destination the Receptioniatig$et will
show a new line is now in use.
4.0 The call is answered by the destination
5.0 Inside Caller and the destination are able to spealach other
6.0 Inside Caller hangs up receiver of handset
Alternate Flows:
3.1 Inside Caller may dial '0' to reach the Receptiostistion
handset
3.2 Inside Caller may dial a 3-digit extension startmith the digit
'1' to reach any other active extension withindbiporate
telephone system connected with a station handset
3.2.1 IfInside Caller dials an inactive extension aroerr
message will be given

o

Iver ath 8 of 11
Technologles



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

3.3 Inside Caller can dial an outside phone numbeeaair
Outside Caller by first pressing the 'outgoingttmuton the
handset keypad

3.3.1 IfInside Caller dials a long distance number &s th
outside phone number, a 4 digit passcode will be
required to complete the dialing

3.4 Inside Caller can connect to emergency servicatidling the
3 digits '911"

Pre and Post Conditions should also be includedwsignificant.

Benefits of creating user scenarios:

» Easy for the owner of the functionality to tell/drahe story about
how it is supposed to work

* System entities and user types are identified

* Allows for easy review and ability to fill in theags or update as
things change

* Provides early testing or validation of architeeturdesign, and
working demos

* Provides systematic step-by-step description obtlseems' services

* Easyto expand the steps into test scenarios trasss

User scenarios quickly provide a clearer picturewdfat the customer is
expecting the product to accomplish. Employingséheser scenarios can
reduce ambiguity and vagueness in the developmreeegs and can, in turn,
be used to create very specific test ideas andlatalithe functionality,

boundaries, and error handling of a program.

Creating user scenarios can be kick-started bylgianmawing a flowchart of
the basic and alternate flows through the systeifhis exercise rapidly
identifies the areas for later testing, outstandijjugstions, and even design
issues.

Checklists
Are there common types of tasks that can be peddrtiroughout the systen ! James Bach of Satisfice.com
Are there tests so straightforward that the use@hario description an: Provides a number of whitepapers

reproduction steps are not necessary (ie: inspetje tests)? and articles on ‘Exploratory
P P y e ) Testing' wherein he has a set of

mnemonics and heuristics in his

Checklists are useful tools to ensure test covepatfgese common tasks, sut it Gne of these mnemonics is

as: SFDPO where the letters stand for
* User interface standards Structure, Function, Data, Platform,
» Data entry (eg: Data type error and boundary tests) and Operations. Using rules and
« Certain features (eg: Search functionality tests) checklists such as these allow you

to quickly focus your test idea
generation and ensure that you
have systematically visited the
major aspects of the product.

Benefits of creating checklists:
» Easyto maintain as things change
» Easyto add to and improve as time passes
» Captures the tests being performed in a centrahtimt for
consistency and repeatability of execution acriosgést team and the
test cycles.

Used in conjunction with user scenarios and flowtshahecklists are part of a
powerful combination of light-weight test planniteghniques.

o

Iver ath 9 of 11
Technologles



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

Matrices (2D+ Checklists)

Test matrices are ideal for tracking the executiba series of tests when there
are multiple dimensions to a checklist, such ases;olenvironments,
configurations, and/or versions (builds) of theleggion.

Benefits of using test matrices:

 Easy to maintain as priorities change and functiphdecomes
available during the project lifecycle

» Simple to prioritize the functional areas and #stg in each area

» Ensure coverage of the appropriate user rolestaidgermissions to
functional areas

» Visible progress tracking of the test effort forcleabuild / release
across the test configurations

 Easy to identify problem areas or environments las project
proceeds

Test matrices can include checklists and user siasnalong with other test
suites and specific individual tests to providdeac picture of what has been
done and how much is left to do.

Conclusion

So why should testing go to the trouble of seamghout the missing

requirements or taming the wild, ambiguous onesfiréssing the aspects of
quality (or lack thereof) on a project leads to kinog smarter rather than
harder, better products, more satisfied custonaerd,therefore higher profits
and a successful company. But, you will never hameugh time to do

everything the 'right' way.

However, if you thoughtfully invest some time tottke understand the

software to be implemented and tested you can migtimprove your actual

testing activities, but also help improve the entproject team's agree wyhen all the pieces come toget
understanding of the product through the increasedmunication — thereb: _ the right people, the right
significantly improving all aspects of product goject quality. processes, the right time, the right
techniques, the right focus - then
we can achieve truly impressive
returns on our testing investment.

Flowcharts and state diagrams provide similar antinees complementar
methods for visualizing, or picturing, the coreoimhation to be captured in

user scenario. Through the rapid process of cigatiese diagrams ar
subsequently reviewing and clarifying them andrtktiries with stakeholder:
test ideas will easily come to the fore for latee@ition.

Of course, even with the best tools and technicodse most effective the te:
team's efforts must start early in the project ameblve all appropriate
stakeholders and participants. So when you gamjpledment the solutior
outlined above, remember to involve subject magaperts and othe
stakeholders in the creation and review of the irequents information yot
collect; use pictures and checklists to facilitat@mmunication, accelerat
understanding and confirm scope and priorities.

Significant reductions in post-
release costs are ours for the taking
with good testing. In cost of quality
parlance, we invest in upfront costs
of conformance (testing and quality
assurance) to reduce the
downstream costs of
nonconformance (maintenance
costs and other intangibles
associated with field failures)-"

Rex Black, "Investing in Software
Testing"

o

Iver ath
Technologles

10 of 11



COMMUNICATING REQUIREMENTS TO TESTING — YOU'RE GOING TO BE IN PICTURES!

About the Author
- Trevor Atkins is Principal Consultant with Silvetpa

: Technologies (www.silverpath.com). Most recentdy h

was a Regional Director of Quality Services withTUS

Global and before that he was a founder and the-Vic

President Operations of QA Labs, the largest

independent software testing company in Canada.

After obtaining a degree of Applied Science in Eieal Engineering from the
University of British Columbia, Trevor has been dhxed in all aspects of
hundreds of successful software projects for teela+ years, and is dedicated
to the design and improvement of quality proce$sesse across projects and
organizations.

About Silverpath TechnologiesInc.

Silverpath Technologies provides results-centricsodting and training
services targeted at improving the effectiveness efficiency of quality and
testing activities across the software developmédifecycle. Visit
http://www.silverpath.com for more information.

j iIverpathi 11 of 11
Technologies



