

WHITEPAPER

COPYRIGHT 2008 SILVERPATH TECHNOLOGIES INC.

Communicating Requirements To Testing
You're Going To Be In Pictures!

By Trevor Atkins October 29, 2008

Communication is the process of attempting to convey information from a
sender to a receiver with the use of a medium. Effective communication
requires that all parties have a basis of commonality in which a shared
understanding on a particular subject can be achieved.

Human communication was revolutionized long ago with speech, which
greatly facilitated the communication of information and knowledge.
Information communicated via spoken language became increasingly rich,
and allowed humans to work and advance together much more quickly than
was previously possible. Speech meant easier coordination, cooperation,
technological progress, and development of complex, abstract concepts.

However, speech depends on the imperfect tool of human memory, through
which information can become corrupted with each re-telling or even lost
entirely to the passage of time, and there is a limit to how much information
can be remembered by the receiver in a single 'communication'. Finally, the
information is stored in the fragile form of the human body – with the
sudden death of a 'wise man' or elder, a tribal group could abruptly lose
generations of accumulated knowledge.

The imperfection of speech eventually resulted in the development of new
forms of communication, improving the range at which people could
communicate as well as increasing the volume and longevity of the
information involved. These advancements were based on the development
of writing in which the representation of concepts through pictographs and
symbols was the key early driver.

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 2 of 11

How do you know what a system is supposed to do and what it is not supposed
to do? Formal requirements are intended to create an easily validated,
maintainable and comprehensive set of documents communicating the system's
planned functional scope in terms of tasks and behaviours.

It is well understood that a higher quality product demands a higher upfront
investment. However, compromises regarding quality versus cost are made
every day and tight project budgets and short timelines often greatly reduce the
interest in formalized documentation, requirements or otherwise.

"The communication of functional requirements and
specifications is the most difficult, critical, and error-
prone task in IT projects. Research has shown that
projects that proceed to the construction and coding
phase with missing or wrong functional requirements and
specifications are almost certain to fail." – Bill Walton,
"A Systematic Approach for More Effective
Communication of Functional Requirements and
Specifications"

A balanced approach that maximizes the contribution of the organization's
available resources within the project constraints is required. The following
proven light-weight solution tailored to your timeframes and resource realities
can allow testing to, in the absence of complete formal requirements, capture
critical information about the system without slowing development. The
resulting artifacts can also serve as a direct input into testing activities –
avoiding significant duplication of effort and possible confusions.

Who Needs Requirements?
In the fast-paced changing world of software development there is a continuous
challenge to communicate the expectations for the system and its internally and
externally facing behaviours. Formal, documented requirements often suffer
because of the challenges in keeping up with short iterative project life-cycles,
continually evolving product scope and customer demands, and uncertain or
changing screens and interfaces.

And yet, requirements information is a primary input to the majority of the
stakeholders' project activities. Consider the following example stakeholder
groups:

• Marketing: Promotion of system capabilities, competitive
comparisons

• Customer: Scope definition, description of business needs and users /
roles, definition of acceptance criteria

• Business Analysis: Elicitation and capture of business logic and tasks
from the customer and other stakeholders

• Project Management: Scope management, risk planning, effort
estimation, project goal setting, project and resource planning

• Development: Design and implementation
• Testing: Verification and validation
• Technical Writing: Creation of user manuals and tutorials

It is evident that all stakeholders have a vested interest to collectively optimize
agreement, while simultaneously minimizing risk and rework costs on a given
project. But, without clearly stated requirements, testing, specifically, is
unable to contribute effectively to these goals or to perform its job of both

"Industry data suggests that
approximately 50 percent of
product defects originate in the
requirements. Perhaps 80 percent
of the rework effort on a
development project can be traced
to requirements defects. Anything
you can do to prevent requirements
errors from propagating
downstream will save you time and
money." – Karl Wiegers,
"Inspecting Requirements"

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 3 of 11

verifying that the system was implemented correctly and validating that the
correct system was implemented.

This impairment also extends to responding to the need to accurately measure
and report the test coverage of the system. Without documented requirements
and the associated dependent artifacts, it is virtually impossible to properly
answer questions such as the following:

• Have all the requirements been implemented?
• Have tests been created to verify each of the requirements?
• Have all the requirements been tested for this build / release?
• Which areas of the system are stable and which are not?

Unless requirements can be traced accurately through the related project
artifacts, such as business requirements, use cases, functional requirements,
design specifications, code, test results, and defects, it is impossible to ensure
that the system is being built for the intended purposes and tested adequately –
keeping the project on track and avoiding expensive rework later.

Working With The Existing Requirements
Most projects will have requirements information in some form or another
whether it is formal specifications, wireframes, mock-ups, prototypes, dialog
maps, content sheets, previous system releases, user manuals, or even stored in
the minds of subject matter experts (SME's). And it is very likely that the
customer has contributed to the requirements by describing what they want
from the system in terms of their business needs.

In general, many of these requirements sources by themselves will not provide
enough detail for developers to code or for testing to test without making
interpretations, assumptions, or guesses. Use cases and functional
requirements are needed to provide the data flow details and the functional
capabilities of each component. And, as the project lifecycle progress, more
artifacts will be included – the design specification, the code, and the tests
which will link to the use cases and the functional requirements, and through
them, to the customer's business requirements.

Writing Quality Requirements
It is common to have some portion of the requirements information
documented in a formal manner for consumption by all stakeholders including
testing.

Formally written requirements are typically described in natural language such
that both the customer and vendor or project team can understand them.
However, many words and phrases have meanings that can be interpreted
based on the context in which they are used. Requirements described in this
form can have several severe problems including: ambiguity, inaccuracy and
inconsistency.

Frequently, the impact of these problems surface late in the project at the
acceptance phase as discrepancies are realized between what was built and
what the customer thought was being built – a clear case of the lack of quality
requirements directly causing customer dissatisfaction.

"The ultimate symptom of vague requirements is that
developers have to ask the author, analyst or customers many
questions, or they have to guess about what is really intended.

"The criticality of correct,
complete, testable requirements is
a fundamental tenet of software
engineering. The success of a
project, both functionally and
financially, is directly affected by
the quality of the requirements."
– Theodore F. Hammer, Linda H.
Rosenberg, et al., "Doing
Requirements Right the First
Time!"

! Requirements traceability is also
beneficial for risk analysis when a
requirement needs to be changed.

"Sometimes developers or project
managers agree to make suggested
changes without carefully thinking
through the implications. The
change might turn out to be more
complex than anticipated, take
longer than promised, be
technically or economically
infeasible, or conflict with other
requirements." – Karl Wiegers,
"Karl Wiegers Describes Ten
Requirements Traps to Avoid"

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 4 of 11

The extent of this guessing game might not be recognized until
the project is far along and implementation has diverged from
what is really required. At this point, expensive rework may
be needed to bring things back into alignment." – Karl
Wiegers, "Karl Wiegers Describes Ten Requirements Traps to
Avoid"

Involving testing early in the project lifecycle means the chance to review
requirements for important quality attributes, ask questions, and get issues
resolved before they become much more expensive problems in the code.

Using a style guide when both writing and reviewing requirements can help
alleviate the problems in this area. With a well-defined style guide that
addresses the quality attributes, such as those identified by the NASA Goddard
Space Flight Center's (GSFC) Software Assurance Technology Center
(SATC), metrics can be easily employed to reveal the strengths and
weaknesses of the formal requirements documentation while there is still time
to fix any issues.

Similar to a development coding standard, a requirements style guide outlines
when and where terms and structures must and may alternately be used,
thereby helping maintain control over ambiguity, consistency, correctness, and
completeness.

What Requirements Are Missing?
The upfront time that it takes to document formal requirements properly and
completely is often perceived as a barrier to avoid even though it is easy to
recognize that the proven savings downstream more than return the investment.

For example, if are you shipping software applications under significant time-
to-market pressures, you likely lack many formal requirements because of the
huge pressures to show tangible progress from the end-users' points of view.
You don't want to slow down development or testing by having to create
detailed documentation. At the same time, the test effort needs to be useful
and measurable or the customer will be the one reporting all the issues whether
they are code or specification related. How, with limited formal requirements,
can this system be tested to achieve adequate effective coverage and overall
stability of its functionality?

Testing can greatly benefit from engaging in up-front information gathering to
increase understanding of how the software is intended to work and in which
situations, especially when formal requirements may be few to none.

In the rushed atmosphere of 'we need to start coding and we need to start now',
it is hard to convince anyone to take the time to perform 'understood' formal
documentation activities, let alone develop and apply a new documentation
technique.

However, the following will outline a solution approach to capture the very
necessary requirements information in a rapid but sophisticated manner that
will feed directly into the needs of testing but also potentially facilitate the
needs of the other stakeholders. And this approach will leverage the test
resources of your project team while they await implemented functionality to
be delivered for testing.

! The SATC developed the
Automated Requirements
Measurement (ARM) tool which
can be used to assess the quality of
a project's requirements documents
easily and on an on-going basis
during the life of the documents.
The ARM tool searches the
requirements document for terms
the SATC has identified as quality
indicators.

For more information on the NASA
SATC quality attributes and the
ARM tool, visit:
http://satc.gsfc.nasa.gov/tools/arm/

! A Standish Group CHAOS study
of over 8,300 IT projects found that
more than 50% were "challenged"
with reduced functionality being
delivered over-budget and beyond
the estimated schedule. The main
reasons were a lack of user input
and incomplete and changing
requirements.

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 5 of 11

Pictures for Testing
When you have minimal or out-of-date requirements, a first step in capturing a
useful understanding of the system to be tested and filling in the gaps regarding
its purpose and functions, is to think in pictures.

Every picture helps tell a story and stories or scenarios form a basis for
analysis and testing.

"Imagery is the most fundamental language we have.
Everything you do, the mind processes through images."
– Dennis Gersten, M.D. published in Atlantis, a bi-monthly
imagery newsletter

The Unified Modeling Language (UML), which is a standard for specifying,
visualizing, and documenting the artifacts of software systems, can be
employed to help provide these pictures. However, there are less formal types
of notations you can use to put together straightforward diagrams, such as
activity flowcharts, data flow diagrams, state diagrams, and sequence
diagrams, that can be more useful for meeting your project's testing needs.

"Pictures can pack a great deal of information into a small
space. They help us to see connections that mere words
cannot." – Elizabeth Hendrickson, "A Picture's Worth a
Thousand Words"

Using diagrams can be very effective to visualize the software, not only for the
tester but for the whole project team and as long as you can capture the
information you need to generate comprehensive, traceable test ideas, it doesn't
matter what notation you use.

The First Sketch
What do you know about the system to be tested? Is it a client-server
application? What are the major subsystems? Is it web-based? Is there a
database? Are there external files being accessed or written? Are there
clusters? What are the major tasks the system is supposed to perform?

Start by asking end users, project managers, developers, and other stakeholders
these basic 'W5H' questions to assist in clarifying the system's scope:

• Why is the system being built?
• Who are the end users of the system?
• What are the tasks to be performed?
• When are there interactions between modules? With other systems?
• Where will the system be deployed?
• How is the system being built? (architecture)

Capture this information in an annotated diagram of the overall system.

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 6 of 11

The following is an example illustration of what part of this initial picture
could look like for a corporate telephone system:

Figure 1: First depiction of a corporate telephone system

Adding the Details
Next, drill-down on the depiction of the main modules and the list of tasks to
address when, why, and how they interact. From this point, you can proceed to
create more detailed diagrams for the functionality and the workflows within
each module and those that span multiple modules.

When capturing these more detailed views of the system, also capture the
following information for each module, workflow, and the system overall:

• State which are the primary tasks of the system
• Describe sequences in which tasks are normally performed
• Describe the user roles / responsibilities and what is common system

usage for each on a periodic basis, eg: daily, monthly, or yearly
• Point out system limitations, eg: things that the system cannot or is

not supposed to do
• Summarize the system's environment, eg: target platforms and other

systems with which it must interface or co-exist
• Outline or list functionality that is not included as part of the

workflows – use checklists

Once you have outlined a rough view of how the system is supposed to behave,
work with end users and applicable stakeholders to review your diagrams and
short descriptions to help in defining the associated scenarios in more detail.
This simple collaboration will not only help you understand what the customer
is expecting but will also allow you to rapidly disseminate and validate the
information you have captured so far with the project team.

At the same time, describing the tasks and subtasks in detail will lead directly
test scenarios and analyzing the relationships among the modules will help
determine the important inputs for the overall testing strategy.

Tools to Develop Your Pictures
Flowcharts and state diagrams are powerful visualization tools for capturing
the behaviours and functionality of a system, establishing path coverage and
generating ideas for error path or negative testing. Narrative user scenarios can
be used to complement and expand upon what is provided in the diagrammatic
representation. Adding checklists and matrices will further enable testing to be

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 7 of 11

able to rapidly document the functionality to be tested and to be able to
measure or assess the progress of that testing easily.

Flowcharts
A flowchart is a common pictorial representation of a process or task,
describing the logical flow of decision points and activities. Flowcharts are
useful for defining the paths you want to verify or to force from an error
condition.

The following is an example illustration of what one annotated scenario for a
corporate telephone system could look like as a flowchart:

Figure 2: First depiction of the 'Making a Call – Originator Is Inside Caller' scenario

Flowcharts provide an excellent form of rapid, largely visual, documentation
that makes it easy to examine how various steps in a process or task should
connect together.

! The flowchart, state diagram and
user scenario examples given
below are presented as 'first
depictions'. As such they are not
necessarily complete or even
correct.

The examples illustrate that the
rapid collection of information can
be made through a combination of
pictorial and narrative approaches
that facilitate easy review and
discussion leading quickly to
traceable test ideas.

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 8 of 11

State Diagrams
Another option to capture system behaviour is through the use of state
diagrams. State diagrams describe all of the possible states of an object as
events occur and the conditions for transitions between those states.

The following is an example illustration of what states the handset of a
corporate telephone system could have:

Figure 3: First depiction of the states of the system handset

All state diagrams begin with an initial state of the object. Transition
conditions based on activities determine the next state of the object. State
diagrams can help reveal states in the system that are not obvious to or are
hidden from the actual users.

User Scenarios
User scenarios define a sequence of actions completed by a system or user that
provides a recognizable result to the user. Like formal requirements, a user
scenario is written in natural language that draws from a common glossary.
The user scenario will have the basic or typical flow of events (the 'must have'
functionality) and the alternate flows.

Example user scenario: The following provides an example outline of
a user scenario:

Name: Making a Call – Originator Is Inside Caller
Actor(s): Inside Caller, (Outside Caller, Receptionist)
Basic Flow:

1.0 Inside Caller picks up receiver of handset
2.0 Inside Caller waits for dial-tone
3.0 Inside Caller dials a phone number on handset keypad. In the

case of an outside destination the Receptionist's handset will
show a new line is now in use.

4.0 The call is answered by the destination
5.0 Inside Caller and the destination are able to speak to each other
6.0 Inside Caller hangs up receiver of handset

Alternate Flows:
3.1 Inside Caller may dial '0' to reach the Receptionist station

handset
3.2 Inside Caller may dial a 3-digit extension starting with the digit

'1' to reach any other active extension within the corporate
telephone system connected with a station handset

3.2.1 If Inside Caller dials an inactive extension an error
message will be given

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 9 of 11

3.3 Inside Caller can dial an outside phone number to reach
Outside Caller by first pressing the 'outgoing' button on the
handset keypad

3.3.1 If Inside Caller dials a long distance number as the
outside phone number, a 4 digit passcode will be
required to complete the dialing

3.4 Inside Caller can connect to emergency services by dialing the
3 digits '911'

Pre and Post Conditions should also be included when significant.

Benefits of creating user scenarios:

• Easy for the owner of the functionality to tell/draw the story about
how it is supposed to work

• System entities and user types are identified
• Allows for easy review and ability to fill in the gaps or update as

things change
• Provides early testing or validation of architecture, design, and

working demos
• Provides systematic step-by-step description of the systems' services
• Easy to expand the steps into test scenarios or test cases

User scenarios quickly provide a clearer picture of what the customer is
expecting the product to accomplish. Employing these user scenarios can
reduce ambiguity and vagueness in the development process and can, in turn,
be used to create very specific test ideas and validate the functionality,
boundaries, and error handling of a program.

Creating user scenarios can be kick-started by simply drawing a flowchart of
the basic and alternate flows through the system. This exercise rapidly
identifies the areas for later testing, outstanding questions, and even design
issues.

Checklists
Are there common types of tasks that can be performed throughout the system?
Are there tests so straightforward that the usual scenario description and
reproduction steps are not necessary (ie: inspection type tests)?

Checklists are useful tools to ensure test coverage of these common tasks, such
as:

• User interface standards
• Data entry (eg: Data type error and boundary tests)
• Certain features (eg: Search functionality tests)

Benefits of creating checklists:

• Easy to maintain as things change
• Easy to add to and improve as time passes
• Captures the tests being performed in a central location for

consistency and repeatability of execution across the test team and the
test cycles.

Used in conjunction with user scenarios and flowcharts, checklists are part of a
powerful combination of light-weight test planning techniques.

! James Bach of Satisfice.com
provides a number of whitepapers
and articles on 'Exploratory
Testing' wherein he has a set of
mnemonics and heuristics in his
toolkit. One of these mnemonics is
SFDPO where the letters stand for
Structure, Function, Data, Platform,
and Operations. Using rules and
checklists such as these allow you
to quickly focus your test idea
generation and ensure that you
have systematically visited the
major aspects of the product.

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 10 of 11

Matrices (2D+ Checklists)
Test matrices are ideal for tracking the execution of a series of tests when there
are multiple dimensions to a checklist, such as roles, environments,
configurations, and/or versions (builds) of the application.

Benefits of using test matrices:

• Easy to maintain as priorities change and functionality becomes
available during the project lifecycle

• Simple to prioritize the functional areas and the tests in each area
• Ensure coverage of the appropriate user roles and their permissions to

functional areas
• Visible progress tracking of the test effort for each build / release

across the test configurations
• Easy to identify problem areas or environments as the project

proceeds

Test matrices can include checklists and user scenarios along with other test
suites and specific individual tests to provide a clear picture of what has been
done and how much is left to do.

Conclusion
So why should testing go to the trouble of searching out the missing
requirements or taming the wild, ambiguous ones? Addressing the aspects of
quality (or lack thereof) on a project leads to working smarter rather than
harder, better products, more satisfied customers, and therefore higher profits
and a successful company. But, you will never have enough time to do
everything the 'right' way.

However, if you thoughtfully invest some time to better understand the
software to be implemented and tested you can not only improve your actual
testing activities, but also help improve the entire project team's agreed
understanding of the product through the increased communication – thereby
significantly improving all aspects of product and project quality.

Flowcharts and state diagrams provide similar and at times complementary
methods for visualizing, or picturing, the core information to be captured in a
user scenario. Through the rapid process of creating these diagrams and
subsequently reviewing and clarifying them and their stories with stakeholders,
test ideas will easily come to the fore for later execution.

Of course, even with the best tools and techniques, to be most effective the test
team's efforts must start early in the project and involve all appropriate
stakeholders and participants. So when you go to implement the solution
outlined above, remember to involve subject matter experts and other
stakeholders in the creation and review of the requirements information you
collect; use pictures and checklists to facilitate communication, accelerate
understanding and confirm scope and priorities.

"When all the pieces come together
- the right people, the right
processes, the right time, the right
techniques, the right focus - then
we can achieve truly impressive
returns on our testing investment.
Significant reductions in post-
release costs are ours for the taking
with good testing. In cost of quality
parlance, we invest in upfront costs
of conformance (testing and quality
assurance) to reduce the
downstream costs of
nonconformance (maintenance
costs and other intangibles
associated with field failures)." –
Rex Black, "Investing in Software
Testing"

COMMUNICATING REQUIREMENTS TO TESTING – YOU'RE GOING TO BE IN PICTURES!

 11 of 11

About the Author
Trevor Atkins is Principal Consultant with Silverpath
Technologies (www.silverpath.com). Most recently he
was a Regional Director of Quality Services with UST
Global and before that he was a founder and the Vice-
President Operations of QA Labs, the largest
independent software testing company in Canada.

After obtaining a degree of Applied Science in Electrical Engineering from the
University of British Columbia, Trevor has been involved in all aspects of
hundreds of successful software projects for the last 12+ years, and is dedicated
to the design and improvement of quality processes for use across projects and
organizations.

About Silverpath Technologies Inc.
Silverpath Technologies provides results-centric consulting and training
services targeted at improving the effectiveness and efficiency of quality and
testing activities across the software development lifecycle. Visit
http://www.silverpath.com for more information.

