
 Thinking

 Through

Testing

Metrics – Thinking in N-Dimensions

Silverpath Technologies Inc.
Trevor.Atkins@silverpath.com

mailto:Trevor.Atkins@silverpath.com

2

What Are Metrics?

 “Means by which software engineers measure and
predict aspects of processes, resources, and products
that are relevant to the software engineering activity.”

– Software Program Managers Network (SPMN)

 “Software quality metric: A function whose inputs are
software data and whose output is a single numerical
value that can be interpreted as the degree to which
software possesses a given attribute that affects its
quality.”

– IEEE Standard for a Software Quality Metrics
Methodology IEEE Std 1061-1998

3

Goals of a Metrics Programme

 Reduce software lifecycle costs by improving process
effectiveness and customer satisfaction

 Provide a quantitative basis for evaluating and making
decisions about software quality in a timely manner

 Identify and increase awareness of quality requirements
and goals

 Provide feedback on the metrics programme itself and
validate the set of metrics being tracked

 Remove ambiguity, Reduce uncertainty
Raise confidence in decision-making

4

Principles of Good Software

 “Satisfaction with the overall quality of the product and its
specific dimensions is usually obtained through various
methods of customer surveys.

 For example, the specific parameters of customer
satisfaction in software monitored by IBM include the
CUPRIMDSO categories (capability / functionality,
usability, performance, reliability, installability,
maintainability, documentation / information, service, and
overall);

 for Hewlett-Packard they are FURPS (functionality,
usability, reliability, performance, and service).”

– Stephen H. Kan, “Metrics and Models in Software Quality Engineering”

https://books.google.ca/books/about/Metrics_and_Models_in_Software_Quality_E.html?id=EaefcL3pWJYC

5

Metrics: Measures & Indicators

 Quality attributes
 Quality factors
 Quality subfactors
 Metrics
 Measures
 Indicators

 A Metrics Framework

IEEE Standard for a Software Quality Metrics
Methodology IEEE Std 1061-1998

6

Some Common Metrics?

 Give examples for:
 Product quality
 Product performance
 Schedule and progress
 Resources and cost
 Development process

 What questions are being
answered?

 What decisions are being
made?

 Should help answer:
 How are we doing?
 Do we have to change?
 What are we accomplishing?
 Are we doing what needs to

be done?
 Where can we be more

efficient?
 Where do we need training

to do better?

Recommend reading:
 “Metrics and Models in Software Quality Engineering”,

2nd Edition, by Stephen H. Kan

https://books.google.ca/books/about/Metrics_and_Models_in_Software_Quality_E.html?id=EaefcL3pWJYC

7

Num ber of Defects by Status and Priority

17 19

57

1
12

22

68

5

31
18

65

1

15
22

124

42 1 6 2
0

20

40

60

80

100

120

140

Open Resolved Closed Deferred

Pri 0 Pri 1 Pri 2 Pri 3 Pri 4

Useful or Not?

 What is the context? Where are we in the project? What events have happened to
cause this picture? What is the change over time?

 To be useful, we need to know what questions/decisions are intended to be
supported by this graph and we need to tell the story that goes with the picture!

 Consider: if you were driving a car is ‘d’, ‘v’, or ‘a’ the most useful thing to measure
…maybe you need all three? What about thresholds? What should ‘a’ be as you
approach Point B (what if it is a wall?)

8

Defect Find Rate Vs. Fix Rate

14

67

79

25
19

13

47

27
17

54

119

0 2

24

6
11

17

98

58

15 14

60

0

20

40

60

80

100

120

140

0330B01 0404B02 0412B04 0420B06 0425B07 0427B08 0430B09 0503B10 0508B11 0510B12 0516B13

Find Rate Fix Rate

Worth, or Needs, 1000 Words?

 This is a velocity type of graph that can tell a great story. But it is open to (false)
conclusions. Don’t assume – Ask questions! Get the real story…

 Can you see where Dev just closed a whole lot of bugs? (nope, didn’t fix them) See
the time between builds is not uniform so looks like numbers fell. Also, the May 8th
build was only smoke tested. Finally, the numbers increase at the end of the graph
because of change in the test execution vs. test case documentation effort ratio.

 Danger: collecting data without capturing the context and then presenting it “as is”…

9

Measuring the Extent of Testing

How much testing have
you got done?

How much more testing
do you have to do?

Are we able to answer this question?

What is your answer based on?

10

Right-click  Context Menu

 Consider these answers:  Makes us wonder:

We’ve tested 60% of lines of code How many requirements covered?
What ratio of test cases executed?
How many defects logged?

We’ve tested 80% of the test cases How many requirements does that
cover? What’s left? # defects?

We’ve discovered 354 defects How much functionality was tested?
Are we stable? Severities?
Clustering?

We’ve tested for 176 hours How many test cases are done? How
many remaining? What priorities? Are
you on schedule?

 By themselves, each answer is 1-Dimensional – ambiguous –
demanding more questions rather than giving answers

 If taken together, however, a multi-dimensional story could be
told…

11

Thinking in N-Dimensions

 1 Dimension
 2 Dimensions
 3 Dimensions

.

.
N-Dimensions

 How many correlated
metrics do you need to
support the decisions you
need to make?

 Use 3 or more metrics for
an increasingly complete
version of the real story

 “How many dimensions are
needed to describe the
universe is still an open
question.”
http://en.wikipedia.org/wiki/Spacetime

http://en.wikipedia.org/wiki/Tesseract

http://en.wikipedia.org/wiki/Spacetime
http://en.wikipedia.org/wiki/Spacetime
http://en.wikipedia.org/wiki/Spacetime
http://en.wikipedia.org/wiki/Tesseract
http://en.wikipedia.org/wiki/Tesseract

12

Tips for Choosing Metrics

 Select practical metrics
 Combine metrics to support answering real world

questions and making timely decisions
 Look for “quick wins” when getting started; what do you

already collect?
 Don’t rely on new metrics to save the day the first time out

 Metrics do change behaviour…
 But not always the way you may hope
 Heisenberg’s Uncertainty Principle

 Build a data/OLAP cube
 Collect the data now for later analysis and use

 Read “Establishing Effective Metrics”
 Guide to IEEE outline for defining a metric in detail

https://en.wikipedia.org/wiki/Uncertainty_principle
http://en.wikipedia.org/wiki/OLAP_cube
http://thinktesting.com/articles/establishing-effective-metrics/

Thinking Through Testing

 Thinking

 Through

Testing

For our latest updates:
 Visit ThinkTesting.com
 Follow @ThinkTesting

We are always sharing our ideas on crafting “right-fit”
approaches to software testing. We are sure you will
find something you can apply to your own projects
and organizational environment.

Discussing "right-fit"
approaches for

software testing

http://thinktesting.com/
https://twitter.com/thinktesting
https://twitter.com/thinktesting
http://thinktesting.com/
https://twitter.com/thinktesting
https://twitter.com/thinktesting

	Metrics – Thinking in N-Dimensions
	What Are Metrics?
	Goals of a Metrics Programme
	Principles of Good Software
	Metrics: Measures & Indicators
	Some Common Metrics?
	Useful or Not?
	Worth, or Needs, 1000 Words?
	Measuring the Extent of Testing
	Right-click  Context Menu
	Thinking in N-Dimensions
	Tips for Choosing Metrics
	Thinking Through Testing

